



# Levcromakalim causes indirect endothelial hyperpolarization *via* a myo-endothelial pathway

**<sup>1</sup>Takeshi Murai, <sup>\*,1</sup>Katsuhiko Muraki, <sup>2</sup>Yuji Imaizumi & <sup>1</sup>Minoru Watanabe**

<sup>1</sup>Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan and <sup>2</sup>Department of Pharmacology & Therapeutics, Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan

**1** Effects of  $K^+$  channel opener, levcromakalim, on vascular endothelial cells were examined. Under voltage- and current-clamp conditions, application of acetylcholine to dispersed endothelial cells isolated from rabbit superior mesenteric artery (dispersed RMAECs) produced hyperpolarization and outward currents. On the other hand, dispersed RMAECs did not respond to levcromakalim.

**2** When membrane potential was recorded from endothelium in a mesenteric arterial segment, exposure to levcromakalim in a concentration range of 0.1 to 3  $\mu M$  caused concentration-dependent hyperpolarization. The hyperpolarization was observed in the absence of external  $Ca^{2+}$  and was inhibited by 10  $\mu M$  glibenclamide.

**3** The presence of 1 mM heptanol did not affect the levcromakalim-induced hyperpolarization, whereas treatment of the mesenteric arterial segment with 20  $\mu M$  18  $\beta$ -glycyrrhetic acid significantly reduced the hyperpolarization. The response to acetylcholine of RMAECs in an arterial segment with 18  $\beta$ -glycyrrhetic acid was, however, similar to that without 18  $\beta$ -glycyrrhetic acid.

**4** These suggest that although RMAECs themselves are functionally insensitive to levcromakalim, those in an arterial segment are hyperpolarized by levcromakalim *via* myo-endothelial electrical communication.

**Keywords:** Levcromakalim; ATP-dependent  $K^+$  current; rabbit mesenteric artery; endothelial cells; myo-endothelial communication; 18  $\beta$ -glycyrrhetic acid

**Abbreviations:** ACh, acetylcholine; dispersed RMAECs, dispersed endothelial cells isolated from rabbit superior mesenteric artery; DMSO, dimethylsulphoxide;  $K_{ATP}$  channel, ATP-dependent  $K^+$  channel; KCOs,  $K^+$  channel openers; NO, nitric oxide; PBS, phosphate-buffered solution; PSS, physiological salt solution; RMASCs, mesenteric arterial smooth muscle cells; seg-RMAECs, endothelial cells in a mesenteric arterial segment

## Introduction

$K^+$  channel openers (KCOs) such as cromakalim, pinacidil and diazoxide effectively dilate smooth muscles in large and small vasculature and the mechanisms have been extensively studied (Kuriyama *et al.*, 1995; Quayle *et al.*, 1997). In the presence of KCOs, potassium channels which are susceptible to glibenclamide and intracellular ATP (ATP-dependent  $K^+$  channel,  $K_{ATP}$  channel), are activated in vascular smooth muscles (Kuriyama *et al.*, 1995; Quayle *et al.*, 1997). On the other hand, the effects of KCOs on vascular endothelial cells are not conclusive because only a few studies using aortic and capillary endothelial cells have been reported (Luckhoff & Busse, 1990a; Janigro *et al.*, 1993; Katnik & Adams, 1995) and furthermore, the responses of endothelial cells to KCOs are controversial depending on cell-conditions (Mehrke *et al.*, 1991; Langheinrich & Daut, 1997).

Membrane potential of endothelial cells is an important factor to regulate the cell-functions such as cell-growth/differentiation and the activity of nitric oxide synthase. Depending on intracellular  $Ca^{2+}$  concentration ( $[Ca^{2+}]_i$ ), they are affected: removal of external  $Ca^{2+}$  critically influences these functions (Faury *et al.*, 1998; Lantoine *et al.*, 1998). In endothelial cells, a large amount of  $Ca^{2+}$  involved in these physiological functions is supplied from outside of the cell *via*  $Ca^{2+}$  permeable channels (cation channels, Nilius *et al.*,

1997b). It is likely that hyperpolarization of endothelial cells increases  $[Ca^{2+}]_i$  due to larger driving force for  $Ca^{2+}$  entry through the cation channels (Nilius *et al.*, 1997b). Therefore, hyperpolarization of endothelial cells by the activation of  $Ca^{2+}$ -dependent  $K^+$  channel followed by receptor stimulation, at least in part, contributes to the maintenance of higher  $[Ca^{2+}]_i$  (Luckhoff & Busse, 1990b; Nilius *et al.*, 1997b). Accordingly, when endothelial cells are hyperpolarized in the presence of KCOs, it is possible that endothelial  $[Ca^{2+}]_i$  is increased and the production of nitric oxide (NO) is facilitated (Luckhoff & Busse, 1990a; Lantoine *et al.*, 1998).

In the present study, effects of levcromakalim on endothelial cells in rabbit superior mesenteric artery were examined. We show that levcromakalim has no effect on dispersed endothelial cells but hyperpolarizes endothelium in an arterial segment *via* myo-endothelial communication which is effectively disrupted by 18  $\beta$ -glycyrrhetic acid, an inhibitor of gap junctions (Yamamoto *et al.*, 1998).

## Methods

### Cell-isolation

Male New Zealand white rabbits weighing 1.5–2.0 kg were anaesthetized by i.v. sodium pentobarbital (30 mg  $kg^{-1}$ ) and killed by exsanguination. All experiments were carried out in

\*Author for correspondence;  
E-mail: kmuraki@phar.nagoya-cu.ac.jp

accordance with guiding principles for the care and use of laboratory animals (the Science and International Affairs Bureau of the Japanese Ministry of Education, Science, Sports and Culture) and also with the approval of the ethics committee in Nagoya City University. For isolation of mesenteric arterial endothelial cells, the isolated superior mesenteric artery was cleaned of fat and connective tissue, and cut open longitudinally. The tissue was pinned in a 60 mm culture dish filled with Ca<sup>2+</sup>-Mg<sup>2+</sup> free phosphate-buffered solution (PBS) containing 0.05% collagenase (Amano) and 0.05% dispase (Boehringer Mannheim, Tokyo, Japan). The culture dish was kept in an incubator at 37°C for 60 min and then the enzyme solution containing isolated endothelial cells was centrifuged at 1200 r.p.m. for 10 min. Thereafter, the supernatant was removed and the pellet was resuspended in the culture medium. Endothelial cells were allowed to attach to gelatin-coated glass coverslips over 8 h at 37°C in air with 5% CO<sub>2</sub> and used within 48 h. When the freshly dispersed cells were used, the pellet containing endothelial cells was resuspended in the PBS solution. These cells were settled down on gelatin coated coverslips and used within 8 h.

#### Electrophysiological experiments

Whole-cell membrane currents and membrane potential were recorded with the amphotericin B-perforated-patch technique by using a CEZ-2300 (Nihon-Koden, Tokyo, Japan) amplifier. The resistance of microelectrodes filled with pipette solution was approximately 3–5 MΩ. Membrane currents and voltage signals were stored and analysed as described previously (Imaizumi *et al.*, 1989; Muraki *et al.*, 1997; Taki *et al.*, 1999). Briefly, membrane currents and voltage signals were monitored on a storage oscilloscope (VC-6041, Hitachi Tokyo, Japan) and stored on videotape after being digitized with a PCM-recording system (modified to acquire a DC signal, PCM 501ES; SONY, Tokyo, Japan). The data on the tape were replayed later and loaded into a computer (IBM-AT compatible) through an A-D converter (Data translation, DT2801A). Membrane currents and potential changes were printed out by using a thermal array recorder (RTA-1200; Nihon-Koden, Tokyo, Japan). When transmembrane potential was recorded from endothelial cells in an intact artery, a vascular segment (2 × 2 mm) was fixed on the luminal side up on the rubber at the bottom of a chamber. Input resistance of endothelial cells in an intact artery was calculated by the following equation (Yamamoto *et al.*, 1998);

$$R_{in} = V_p I_s^{-1} - V_p I_i^{-1}$$

where V<sub>p</sub> is the amplitude of the voltage step, I<sub>i</sub> and I<sub>s</sub> are the amplitude of membrane current at the beginning and the end of the voltage step, respectively.

All experiments were carried out at 25 ± 1°C in a physiological salt solution (PSS) containing (mM) NaCl 137, KCl 5.9, MgCl<sub>2</sub> 1.2, CaCl<sub>2</sub> 2.2, glucose 10, and HEPES 10. The pH was adjusted to 7.4 with 10 N NaOH. PBS contained (mM) NaCl 137, KCl 2.7, Na<sub>2</sub>HPO<sub>4</sub> 8.1, KH<sub>2</sub>PO<sub>4</sub> 1.47, MgCl<sub>2</sub> 1.0, CaCl<sub>2</sub> 1.5. The pipette solution contained (mM) K-aspartate 110, KCl 30, MgCl<sub>2</sub> 4, HEPES 10 and 300 µg ml<sup>-1</sup> ml amphotericin B. The pH of the pipette solution was adjusted to 7.2 with KOH.

#### Measurement of tension development

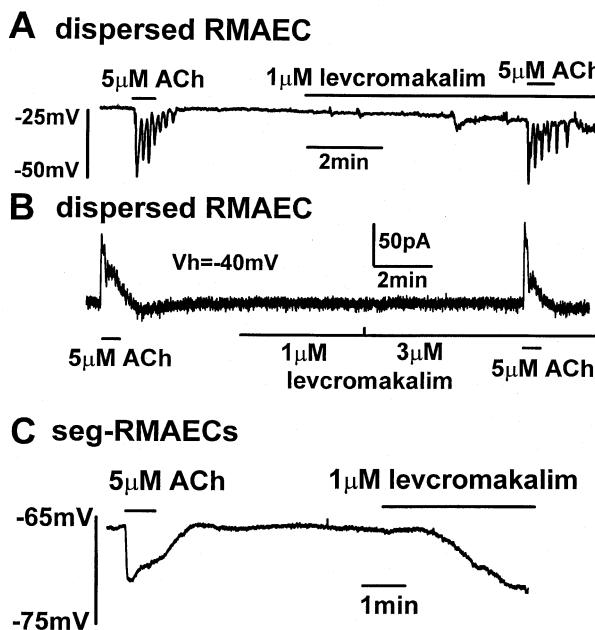
After connective tissue and adventitia were removed carefully, 1 mm lengths of vessel ring were cut out from the superior mesenteric artery. The endothelium was removed by rubbing

the inner lumen of the vessel with a cotton pad. The vessel ring was set up in a 4 ml organ bath to measure isometric tension with a force-transducer and perfused with Kreb's solution which was maintained at 37 ± 1°C and gassed with 95% O<sub>2</sub> and 5% CO<sub>2</sub>. The composition of Kreb's solution was (mM); NaCl 117, MgCl<sub>2</sub> 1.2, CaCl<sub>2</sub> 2.2, KCl 4.7, KH<sub>2</sub>PO<sub>4</sub> 1.2, Glucose 14 and NaHCO<sub>3</sub> 25.

#### Drugs

The following drugs were used: acetylcholine (ACh, Wako, Tokyo, Japan), phenylephrine (Wako), levcromakalim, nicorandil, diazoxide (Sigma, St. Louis, USA), glibenclamide (Sigma), heptanol (Sigma), acetylated low-density lipoprotein labelled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indo-carbocyanine perchlorate (Funakoshi, Tokyo, Japan), 18 β-glycyrrhetic acid (Sigma) and amphotericin B (Sigma). Each drug except levcromakalim, nicorandil, diazoxide, glibenclamide, 18 β-glycyrrhetic acid and amphotericin B was dissolved in distilled water to make 10 mM stock solutions. Levcromakalim, nicorandil, diazoxide, glibenclamide, 18 β-glycyrrhetic acid and amphotericin B were dissolved in dimethylsulphoxide (DMSO, 100 mM as stock). These solvents (distilled water and DMSO) had no effect on membrane currents and potentials when a corresponding amount was applied. Drug concentrations are expressed as the final concentration in PSS and the pH of PSS was readjusted after the addition of drugs. All drugs were applied at a constant flow rate of 0.1 ml s<sup>-1</sup>. A change of PSS could be achieved within 10 s.

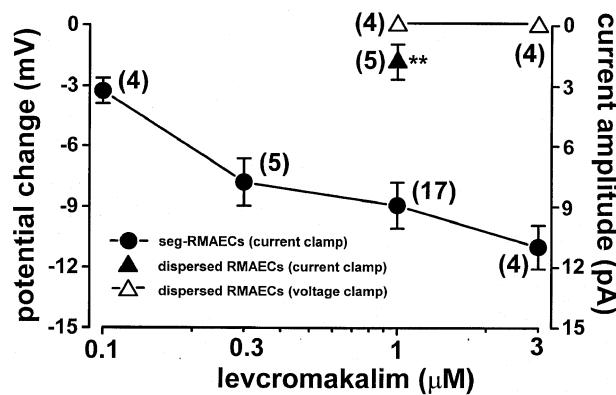
#### Statistics


Data are expressed as mean ± s.e.mean. Statistical significance between two or among multiple groups was examined using Student's *t*- or Scheffé's test, respectively. Statistical significance at *P* values of 0.05 and 0.01 is indicated in figures and text by \* and \*\*, respectively.

## Results

#### Effects of levcromakalim on rabbit mesenteric arterial endothelial cells

A large number of cells dispersed in the present study (>80%) were identified as endothelial cells by their specific uptake of acetylated low-density lipoprotein labelled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indo-carbocyanine perchlorate (not shown). Moreover, cells that had hyperpolarizing response to ACh were used in the present study. Averaged resting membrane potential of dispersed RMAECs was -30.8 ± 3.1 mV (*n* = 13). As shown in Figure 1A, when 5 µM ACh was applied to a dispersed RMAEC, oscillatory hyperpolarization was elicited and its peak amplitude was -59.2 ± 4.1 mV (*n* = 13). Addition of 1 µM levcromakalim had a small effect on the membrane potential of the cell; in contrast, re-administration of 5 µM ACh induced the marked hyperpolarization (Figure 2, *n* = 5, the closed triangle).


When a cell was voltage-clamped at a holding potential of -40 mV, application of 5 µM ACh elicited outward currents (Figure 1B) and the averaged peak amplitude was 72.0 ± 14.8 pA (*n* = 6). Subsequent application of levcromakalim up to 3 µM failed to activate any membrane currents (Figure 1B). During the treatment of the cell with levcromakalim, the response to ACh was reproducible



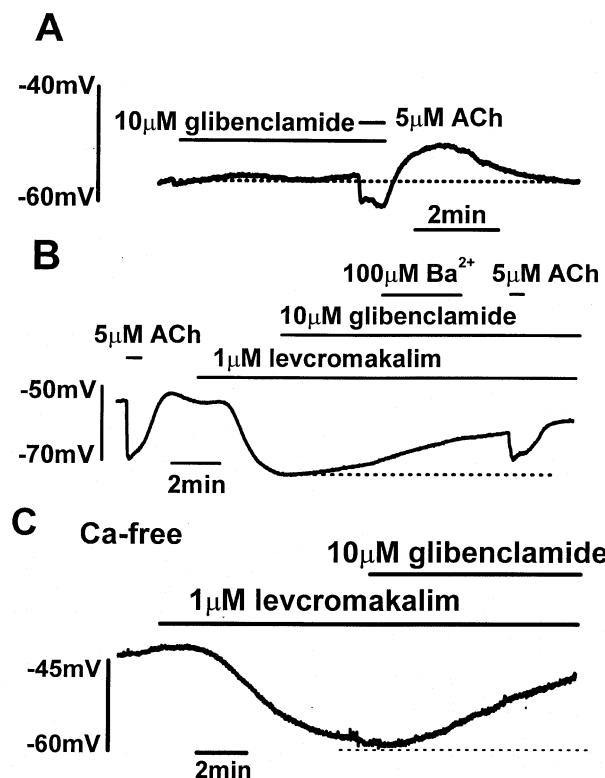
**Figure 1** Effects of levromakalim on RMAECs. (A) A dispersed RMAEC was treated with 5  $\mu$ M ACh and subsequently 1  $\mu$ M levromakalim under current-clamp conditions. (B) Under voltage-clamp conditions at  $-40$  mV, a dispersed RMAEC was superfused with 5  $\mu$ M ACh, 1 and 3  $\mu$ M levromakalim. (C) Effects of 5  $\mu$ M ACh and 1  $\mu$ M levromakalim on seg-RMAECs.

(87.2  $\pm$  18.0 pA,  $P > 0.05$ , vs 72.0  $\pm$  14.8 pA). Moreover, when cells were superfused with 140 mM K<sup>+</sup>, application of 10  $\mu$ M levromakalim had no effects on membrane currents at a holding potential of  $-60$  mV ( $n = 3$ ). The resting membrane potential of freshly dispersed RMAECs was  $-30.4 \pm 2.4$  mV ( $n = 8$ ), which was not significantly different from that of dispersed RMAECs kept in culture medium over 8 h ( $-30.8 \pm 3.1$  mV ( $n = 13$ )). Application of 3  $\mu$ M levromakalim had no effects on the resting membrane potential and the holding current of  $-40$  mV recorded from the freshly dispersed RMAECs, whereas 5  $\mu$ M ACh induced the hyperpolarization ( $-37.7 \pm 1.5$  mV,  $n = 3$ ) and the outward current at  $-40$  mV ( $81.3 \pm 23$  pA,  $n = 4$ ). These results suggest that levromakalim does not have any effects on electrophysiological responses of dispersed RMAECs.

Figure 1C shows effects of ACh and levromakalim on membrane potential recorded from endothelial cells in a mesenteric arterial segment (seg-RMAECs). After transmembrane potential was stably recorded, seg-RMAECs were treated with 5  $\mu$ M ACh to confirm that electrical signals came from endothelial cells. The averaged resting membrane potential of the seg-RMAECs and the hyperpolarized by 5  $\mu$ M ACh were  $-61.1 \pm 1.2$  mV ( $n = 68$ ) and  $-6.8 \pm 0.8$  mV ( $n = 17$ ), respectively. Surprisingly, subsequent application of 1  $\mu$ M levromakalim as well as ACh hyperpolarized seg-RMAECs by  $-8.9 \pm 1.1$  mV ( $n = 17$ ). Onset of hyperpolarization by levromakalim was significantly slower than that by ACh ( $62.7 \pm 6.0$  vs  $11.9 \pm 1.5$  s, respectively,  $n = 17$ ,  $P < 0.01$ ). Moreover, it took longer for the hyperpolarization elicited by levromakalim to reach a maximum compared with that elicited by ACh ( $224.1 \pm 22.5$  vs  $5.1 \pm 0.5$  s, respectively,  $n = 17$ ,  $P < 0.01$ ). The effects of levromakalim on RMAECs that were dispersed or existed in the arterial segment are summarized in Figure 2. Responses of dispersed RMAECs to levromakalim under current-clamp (a closed triangle) and voltage-clamp conditions (open triangles) were substantially small in



**Figure 2** Summarized data describing effects of levromakalim on dispersed and seg-RMAECs under current and voltage-clamp conditions. Number in the parentheses indicates the number of cells employed. \*\* $P < 0.01$  vs seg-RMAECs.


comparison with that of seg-RMAECs (closed circles). Levromakalim hyperpolarized seg-RMAECs in a concentration-dependent manner and the concentration required for 50% of the maximum response was approximately 0.3  $\mu$ M. Moreover, neither 300  $\mu$ M diazoxide nor 100  $\mu$ M nicorandil had effects on the dispersed RMAECs ( $n = 2$  and  $n = 3$ , respectively). A marked hyperpolarization was, however, observed when 100  $\mu$ M nicorandil was applied to the seg-RMAECs ( $-11.5 \pm 2.3$  mV,  $n = 3$ ). Levromakalim possibly affects not RMAECs but mesenteric arterial smooth muscle cells (RMASCs).

#### Membrane current component involved in levromakalim-induced hyperpolarization in seg-RMAECs

In Figure 3, membrane current components involved in levromakalim-induced hyperpolarization in seg-RMAECs were examined using potassium channel inhibitors. After seg-RMAECs were treated with 5  $\mu$ M ACh, exposure to 1  $\mu$ M levromakalim elicited marked hyperpolarization. Addition of 10  $\mu$ M glibenclamide, an ATP-dependent K<sup>+</sup> channel (K<sub>ATP</sub> channel) inhibitor, gradually reduced the hyperpolarization (Figure 3B). On the other hand, 10  $\mu$ M glibenclamide had no effect on the membrane potential of seg-RMAECs without levromakalim (Figure 3A). As shown in Figure 3B, 100  $\mu$ M Ba<sup>2+</sup> further inhibited the hyperpolarization ( $n = 4$ ). Hyperpolarization induced by 1  $\mu$ M levromakalim was suppressed by  $49.5 \pm 8.3\%$  ( $n = 5$ ) 10 min after addition of 10  $\mu$ M glibenclamide. In the absence of external Ca<sup>2+</sup>, 1  $\mu$ M levromakalim induced  $-16.5$  mV ( $n = 2$ ) hyperpolarization (Figure 3C) and subsequent application of 10  $\mu$ M glibenclamide suppressed this hyperpolarization. These results give evidence that ATP-dependent K<sup>+</sup> current but neither inwardly rectified K<sup>+</sup> nor Ca<sup>2+</sup>-dependent K<sup>+</sup> current plays an obligatory role in hyperpolarization induced by levromakalim in seg-RMAECs.

#### Effects of gap junction channel inhibitors on levromakalim-induced hyperpolarization in seg-RMAECs

To confirm that the hyperpolarization in seg-RMAECs induced by levromakalim is derived from that in RMASCs via myo-endothelial electrical communications, effects of heptanol and 18  $\beta$ -glycyrrhetic acid, inhibitors of gap



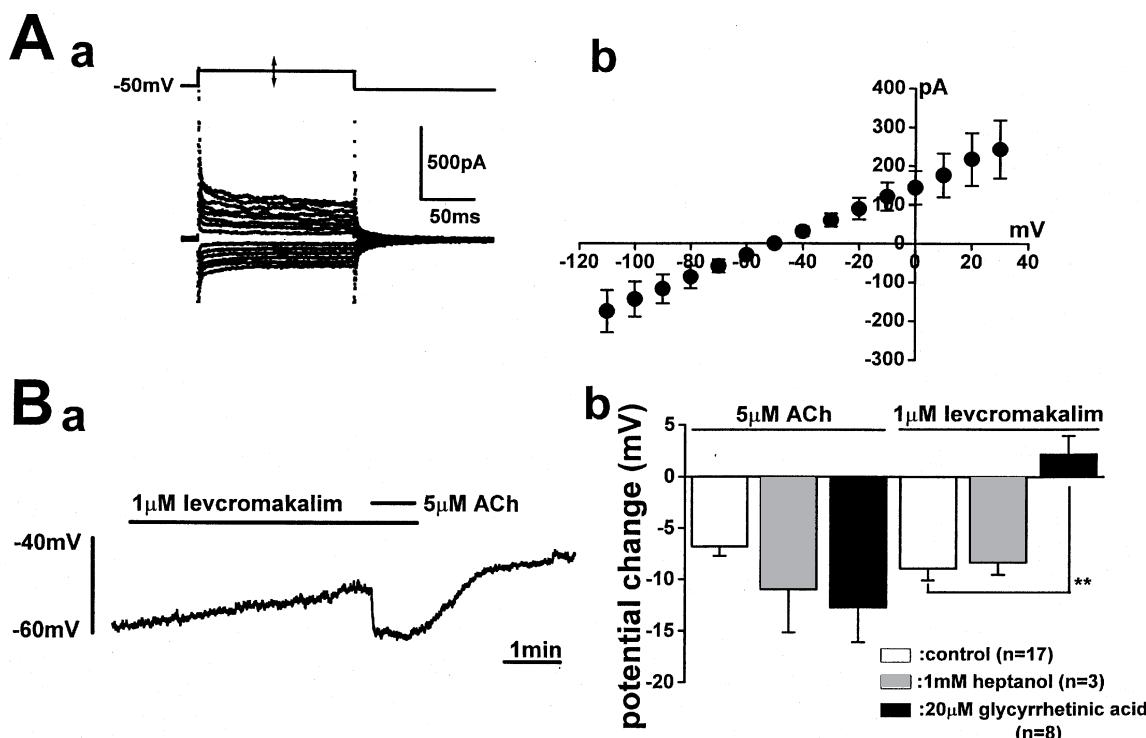
**Figure 3** Effects of potassium channel inhibitors and removal of external  $\text{Ca}^{2+}$  on levromakalim-induced hyperpolarization in seg-RMAECs. (A) Membrane potential was recorded from seg-RMAECs. In the absence of levromakalim,  $10 \mu\text{M}$  glibenclamide and subsequently  $5 \mu\text{M}$  ACh were applied. (B) After seg-RMAECs were hyperpolarized in the presence of  $1 \mu\text{M}$  levromakalim, seg-RMAECs were exposed to  $10 \mu\text{M}$  glibenclamide and  $100 \mu\text{M}$   $\text{Ba}^{2+}$ . (C) Hyperpolarization of seg-RMAECs induced by  $1 \mu\text{M}$  levromakalim in the absence of external  $\text{Ca}^{2+}$ .

junction channels, on the levromakalim-induced hyperpolarization were examined in Figure 4. In the presence of  $1 \text{ mM}$  heptanol, the resting membrane potential of seg-RMAECs was  $-58.4 \pm 4.0 \text{ mV}$  ( $n=5$ ,  $P>0.05$ ) vs control ( $-61.1 \pm 1.2 \text{ mV}$ ,  $n=68$ ). Addition of  $5 \mu\text{M}$  ACh and  $1 \mu\text{M}$  levromakalim hyperpolarized seg-RMAECs by  $-11.0 \pm 4.2$  and  $-8.3 \pm 1.2 \text{ mV}$  ( $n=3$ ), which were not significantly different from those without heptanol (Figure 4Bb, the open columns vs the hatched columns). In contrast, when  $20 \mu\text{M}$   $18 \beta$ -glycyrrhetic acid was present in the bathing solution, seg-RMAECs were depolarized to  $-48.4 \pm 2.4 \text{ mV}$  ( $n=27$ ) and the input resistance was markedly increased to  $0.58 \pm 0.24 \text{ G}\Omega$  ( $n=5$ ) vs  $5.6 \pm 1.5 \text{ M}\Omega$  ( $n=6$ ) in the absence of  $18 \beta$ -glycyrrhetic acid. Under these conditions, changes of membrane potential from a holding potential of  $-50 \text{ mV}$  in  $10 \text{ mV}$  increments mainly produced a leak current shown in Figure 4Aa, Ab. Depolarization to more positive potentials than  $0 \text{ mV}$ , however, elicited small fluctuatory currents (Figure 4Aa). As shown in Figure 4Ba, in the presence of  $20 \mu\text{M}$   $18 \beta$ -glycyrrhetic acid, levromakalim-induced hyperpolarization was abolished ( $+2.2 \pm 1.8 \text{ mV}$  ( $n=8$ ,  $P<0.01$ ) vs control ( $-8.9 \pm 1.1 \text{ mV}$ ,  $n=17$ ), Figure 4Bb); nevertheless, the seg-RMAECs were hyperpolarized by application of  $5 \mu\text{M}$  ACh ( $-12.8 \pm 3.4 \text{ mV}$ ,  $n=8$ , vs control ( $-6.8 \pm 0.9 \text{ mV}$ ,  $n=17$ ),  $P>0.05$ , Figure 4Bb).

It was possible that  $18 \beta$ -glycyrrhetic acid directly blocked  $\text{K}_{\text{ATP}}$  channels in RMASCs. This was examined by measuring muscle tension from a rabbit mesenteric arterial ring in which endothelium was denuded. In the absence and presence of

#### $\text{K}^+$ channel opener and endothelial hyperpolarization

$20 \mu\text{M}$   $18 \beta$ -glycyrrhetic acid, the muscle ring was contracted by  $1 \mu\text{M}$  phenylephrine. Relaxation of the muscle ring in response to  $1 \mu\text{M}$  levromakalim was not significantly affected by incubation with  $20 \mu\text{M}$   $18 \beta$ -glycyrrhetic acid for 20 min ( $82.4 \pm 10.5$  and  $81.4 \pm 4.8\%$  relaxation in the absence and presence of  $18 \beta$ -glycyrrhetic acid,  $P>0.05$ ,  $n=4$ ).


#### Discussion

The present study clearly demonstrated that although dispersed RMAECs were functionally insensitive to levromakalim, RMAECs in an arterial segment were significantly hyperpolarized by levromakalim *via* myo-endothelial communication which is effectively disrupted by  $18 \beta$ -glycyrrhetic acid.

Physiological and pharmacological characteristics of RMAECs were first clarified in the present study. Dispersed RMAECs have: (1) a resting membrane potential of approximately  $-30 \text{ mV}$ , (2) a response to ACh that involves  $\text{I}_{\text{K}-\text{Ca}}$  and hyperpolarization, (3) lack of response to levromakalim. Low resting membrane potential has been reported in various types of endothelial cells (ECs); rabbit aortic ECs: Katnik & Adams, 1995; human umbilical vein ECs: Nilius *et al.*, 1997a. Since the resting membrane potential in macrovascular ECs is generally more positive than that in microvascular ECs, the resting membrane potential of RMAECs ( $\sim -30 \text{ mV}$ ) may not be exceptional. In contrast, a lack of response of RMAECs to levromakalim was distinct from that reported previously (Janigro *et al.*, 1993; Katnik & Adams, 1995). In rabbit, porcine and rat aortic ECs, KCOs elicited hyperpolarization and/or currents sensitive to glibenclamide. The reason of this discrepancy is not clear. In guinea-pig coronary capillaries,  $\text{K}_{\text{ATP}}$  channels are absent or inactivated under cell-culture conditions (Langheinrich *et al.*, 1998). On the other hand, the response of cultured rabbit mesenteric arterial smooth muscle cells to KCOs was not affected by cell-culture within 7 days (Kleppisch *et al.*, 1996). Since diazoxide and nicorandil as well as levromakalim did not affect dispersed RMAECs, it is most likely that the RMAECs are functionally insensitive to KCOs under the present experimental conditions.

Electrical response of seg-RMAECs to levromakalim was distinct from that of dispersed RMAECs. Seg-RMAECs were effectively hyperpolarized by application of levromakalim: the  $\text{EC}_{50}$  was  $\sim 0.3 \mu\text{M}$ . It has been reported that cromakalim in a concentration range between  $0.1$  and  $10 \mu\text{M}$  produced  $10$  to  $20 \text{ mV}$  hyperpolarization in several types of vascular smooth muscles: in addition, the treatment with glibenclamide decreased the hyperpolarization; rabbit mesenteric artery (McHarg *et al.*, 1990; Muraki *et al.*, unpublished observation) and guinea-pig basilar artery (Plane & Garland, 1993) (as reviews: Kuriyama *et al.*, 1995; Quayle *et al.*, 1997). In dispersed RMASCs, KCOs such as cromakalim, pinacidil and diazoxide activate glibenclamide-sensitive membrane currents, indicating that  $\text{K}_{\text{ATP}}$  channels are abundant in rabbit mesenteric artery (Quayle *et al.*, 1995; Muraki *et al.*, unpublished observation). Our finding that levromakalim induces glibenclamide-sensitive hyperpolarization in seg-RMAECs but not in dispersed RMAECs strongly suggests that activation of  $\text{K}_{\text{ATP}}$  channels in smooth muscle predominantly affects the membrane potential of endothelium.

Application of  $18 \beta$ -glycyrrhetic acid inhibited the levromakalim-induced hyperpolarization in seg-RMAECs but heptanol did not. Although inhibitors of gap junctional



**Figure 4** Effects of gap junction channel inhibitors on levromakalim-induced hyperpolarization in seg-RMAECs. (Aa) Gap junctions were disrupted by incubation of seg-RMAECs with 20  $\mu$ M 18  $\beta$ -glycyrrhetic acid for 20 min. The seg-RMAECs were depolarized and hyperpolarized every 10 s from a holding potential of  $-50$  mV to potentials between  $-110$  and  $+30$  mV at 10 mV step. The input resistance of this cell was  $0.26$  G $\Omega$ . (Ab) Summary of the current and voltage relationship obtained from five separate seg-RMAECs which were treated with 20  $\mu$ M 18  $\beta$ -glycyrrhetic acid. (Ba) Effects of 1  $\mu$ M levromakalim and 5  $\mu$ M ACh on seg-RMAECs in which gap junctions were disrupted by 20  $\mu$ M 18  $\beta$ -glycyrrhetic acid. The input resistance of this cell was  $0.46$  G $\Omega$ . (Bb) Summarized data describing the effects of heptanol and 18  $\beta$ -glycyrrhetic acid on ACh and levromakalim-induced hyperpolarizations in seg-RMAECs. \*\* $P$  < 0.01 vs control.

communication in several types of cells, these inhibitors may have non-specific actions and their effectiveness in smooth muscle has not been clear (Spray & Burt, 1990; Hashitani & Suzuki, 1997; Chaytor *et al.*, 1998). On the other hand, glycyrrhetic acid is a lipophilic aglycone, which can exert gap junctional communication in several types of cells (Davidson & Baumgarten, 1988; Guan *et al.*, 1996; Guo *et al.*, 1999). Recent findings demonstrate that glycyrrhetic acid disrupts myo-endothelial communication (Taylor *et al.*, 1998; Yamamoto *et al.*, 1998). Although the  $\beta$  isoform of glycyrrhetic acid shows non-specific effects, the present results may exclude this possibility: the response to ACh of seg-RMAECs with 18  $\beta$ -glycyrrhetic acid was not significantly different from that without 18  $\beta$ -glycyrrhetic acid and the incubation of the muscle ring with 18  $\beta$ -glycyrrhetic acid did not affect the levromakalim-induced relaxation. Consistently, endothelial electrical responses to ACh of guinea-pig mesenteric arterioles in the presence of 20–40  $\mu$ M 18  $\beta$ -glycyrrhetic acid were similar to those in the absence (Yamamoto *et al.*, 1998; 1999). Our finding, therefore, gives strong evidence that glycyrrhetic acid-sensitive gap junctions conduct the hyperpolarization in RMASCs to seg-RMAECs, resulting in a negative offset of the membrane potential of seg-RMAECs.

The influence of the endothelium/NO on vasorelaxation to KCOs has not been concluded. In the rat mesenteric arterial bed, removal of basal NO significantly augmented the responses to KCOs via cyclic GMP dependent mechanisms

(McCulloch & Randall, 1996). On the other hand, the vasorelaxing effect of a KCO in endothelium-intact rat aorta was more potent than in an endothelium-denuded one (Tanaka *et al.*, 1999). The amount of NO released from endothelium in small arterioles is substantially greater than that in large arteries, possibly being involved in the difference of effects of NO on vasorelaxation to KCOs. Although the present results raises the possibility that KCOs facilitate release of NO from seg-RMAECs by the endothelial hyperpolarization *via* myo-endothelial communication, it is not clear that the facilitation of NO release increases or decreases the relaxation of RMASCs to KCOs. Further investigation is required to clarify the influence of NO on the vasorelaxation to KCOs.

In conclusion, levromakalim causes hyperpolarization of seg-RMAECs *via* myo-endothelial communication as well as the relaxation and the hyperpolarization of RMASCs. When vascular smooth muscle cells are hyperpolarized by certain vasoactive factors, endothelial cells, which are even electrically insensitive to these factors, can be hyperpolarized *via* the myo-endothelial communication.

We thank Dr W. Giles (University of Calgary, Canada) for supplying the data acquisition (AQ) and analysis (Cellsoft) software. This study was supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Science, Sports and Culture to K. Muraki.

## References

CHAYTOR, A.T., EVANS, W.H. & GRIFFITH, T.M. (1998). Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. *J. Physiol.*, **508**, 561–573.

DAVIDSON, J.S. & BAUMGARTEN, I.M. (1988). Glycyrhetic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. *J. Pharmacol. Exp. Ther.*, **246**, 1104–1107.

FAURY, G., USSON, Y., ROBERT-NICOU, M., ROBERT, L. & VERDETTI, J. (1998). Nuclear and cytoplasmic free calcium level changes induced by elastin peptides in human endothelial cells. *Proc. Natl. Acad. Sci. U.S.A.*, **95**, 2967–2972.

GUAN, X., WILSON, S., SCHLENDER, K.K. & RUCH, R.J. (1996). Gap-junction disassembly and connexin 43 dephosphorylation induced by 18 beta-glycyrhetic acid. *Mol. Carcinog.*, **16**, 157–164.

GUO, Y., MARTINEZ-WILLIAMS, C., GILBERT, K.A. & RANNELS, D.E. (1999). Inhibition of gap junction communication in alveolar epithelial cells by 18alpha-glycyrhetic acid. *Am. J. Physiol.*, **276**, L1018–L1026.

HASHITANI, H. & SUZUKI, H. (1997). K<sup>+</sup> channels which contribute to the acetylcholine-induced hyperpolarization in smooth muscle of the guinea-pig submucosal arteriole. *J. Physiol.*, **501**, 319–329.

IMAIZUMI, Y., MURAKI, K. & WATANABE, M. (1989). Ionic currents in single smooth muscle cells from the ureter of the guinea-pig. *J. Physiol.*, **411**, 131–159.

JANIGRO, D., WEST, G.A., GORDON, E.L. & WINN, H.R. (1993). ATP-sensitive K<sup>+</sup> channels in rat aorta and brain microvascular endothelial cells. *Am. J. Physiol.*, **265**, C812–C821.

KATNIK, C. & ADAMS, D.J. (1995). An ATP-sensitive potassium conductance in rabbit arterial endothelial cells. *J. Physiol.*, **485**, 595–606.

KLEPPISCH, T., WINTER, B. & NELSON, M.T. (1996). ATP-sensitive potassium channels in cultured arterial segments. *Am. J. Physiol.*, **271**, H2462–H2468.

KURIYAMA, H., KITAMURA, K. & NABATA, H. (1995). Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues. *Pharmacol. Rev.*, **47**, 387–573.

LANGHEINRICH, U. & DAUT, J. (1997). Hyperpolarization of isolated capillaries from guinea-pig heart induced by K<sup>+</sup> channel openers and glucose deprivation. *J. Physiol.*, **502**, 397–408.

LANGHEINRICH, U., MEDEROS, Y.S.M. & DAUT, J. (1998). Ca<sup>2+</sup>-transients induced by K<sup>+</sup> channel openers in isolated coronary capillaries. *Pflügers Arch.*, **435**, 435–438.

LANTOINE, F., IOUZALEN, L., DEVYNCK, M.A., MILLANVOYEVAN, B.E. & DAVID-DUFILHO, M. (1998). Nitric oxide production in human endothelial cells stimulated by histamine requires Ca<sup>2+</sup> influx. *Biochem. J.*, **330**, 695–699.

LUCKHOFF, A. & BUSSE, R. (1990a). Activators of potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents. *Naunyn Schmiedebergs Arch. Pharmacol.*, **342**, 94–99.

LUCKHOFF, A. & BUSSE, R. (1990b). Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. *Pflügers Arch.*, **416**, 305–311.

MCCULLOCH, A.I. & RANDALL, M.D. (1996). Modulation of vasorelaxant responses to potassium channel openers by basal nitric oxide in the rat isolated superior mesenteric arterial bed. *Br. J. Pharmacol.*, **117**, 859–866.

MCHARG, A.D., SOUTHERTON, J.S. & WESTON, A.H. (1990). A comparison of the actions of chromakalim and nifedipine on rabbit isolated mesenteric artery. *Eur. J. Pharmacol.*, **185**, 137–146.

MEHRKE, G., POHL, U. & DAUT, J. (1991). Effects of vasoactive agonists on the membrane potential of cultured bovine aortic and guinea-pig coronary endothelium. *J. Physiol.*, **439**, 277–299.

MURAKI, K., IMAIZUMI, Y., OHYA, S., SATO, K., TAKII, T., ONOZAKI, K. & WATANABE, M. (1997). Apamin-sensitive Ca<sup>2+</sup>-dependent K<sup>+</sup> current and hyperpolarization in human endothelial cells. *Biochem. Biophys. Res. Commun.*, **236**, 340–343.

NILIUS, B., PRENEN, J., KAMOUCHI, M., VIANA, F., VOETS, T. & DROOGMANS, G. (1997a). Inhibition by mibepradil, a novel calcium channel antagonist, of Ca<sup>2+</sup>- and volume-activated Cl<sup>-</sup> channels in macrovascular endothelial cells. *Br. J. Pharmacol.*, **121**, 547–555.

NILIUS, B., VIANA, F. & DROOGMANS, G. (1997b). Ion channels in vascular endothelium. *Annu. Rev. Physiol.*, **59**, 145–170.

PLANE, F. & GARLAND, C.J. (1993). Differential effects of acetylcholine, nitric oxide and levromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery. *Br. J. Pharmacol.*, **110**, 651–656.

QUAYLE, J.M., BONEV, A.D., BRAYDEN, J.E. & NELSON, M.T. (1995). Pharmacology of ATP-sensitive K<sup>+</sup> currents in smooth muscle cells from rabbit mesenteric artery. *Am. J. Physiol.*, **269**, C1112–C1118.

QUAYLE, J.M., NELSON, M.T. & STANDEN, N.B. (1997). ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. *Physiol. Rev.*, **77**, 1165–1232.

SPRAY, D.C. & BURT, J.M. (1990). Structure-activity relations of the cardiac gap junction channel. *Am. J. Physiol.*, **258**, C195–C205.

TAKI, H., MURAKI, K., IMAIZUMI, Y. & WATANABE, M. (1999). Mechanisms of palmitoylcarnitine-induced response in vascular endothelial cells. *Pflügers Arch-Eur. J. Physiol.*, **438**, 463–469.

TANAKA, Y., YAMAKI, F., HIRANO, H., OTSUKA, A., TANAKA, H. & SHIGENOBU, K. (1999). Endothelium is involved in the vasorelaxation by an ATP-sensitive K<sup>+</sup> channel opener, NIP-121. *Eur. J. Pharmacol.*, **366**, R9–R10.

TAYLOR, H.J., CHAYTOR, A.T., EVANS, W.H. & GRIFFITH, T.M. (1998). Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18- $\alpha$  glycyrhetic acid. *Br. J. Pharmacol.*, **125**, 1–3.

YAMAMOTO, Y., FUKUTA, H., NAKAHIRA, Y. & SUZUKI, H. (1998). Blockade by 18 $\beta$ -glycyrhetic acid of intercellular electrical coupling in guinea-pig arterioles. *J. Physiol.*, **511**, 501–508.

YAMAMOTO, Y., IMAEDA, K. & SUZUKI, H. (1999). Endothelium-dependent hyperpolarization and intercellular electrical coupling in guinea-pig mesenteric arterioles. *J. Physiol.*, **514**, 505–513.

(Received September 9, 1999)

Revised September 20, 1999

Accepted September 24, 1999)